Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable
نویسندگان
چکیده
The traditional regression analysis is usually applied to homogeneous observations. However, there are several real situations where the observations are not homogeneous. In these cases, by utilizing the traditional regression, we have a loss of performance in fitting terms. Then, for improving the goodness of fit, it is more suitable to apply the so-called clusterwise regression analysis. The aim of clusterwise linear regression analysis is to embed the techniques of clustering into regression analysis. In this way, the clustering methods are utilized for overcoming the heterogeneity problem in regression analysis. Furthermore, by integrating cluster analysis into the regression framework, the regression parameters (regression analysis) and membership degrees (cluster analysis) can be estimated simultaneously by optimizing one single objective function. In this paper the clusterwise linear regression has been analyzed in a fuzzy framework. In particular, a fuzzy clusterwise linear regression model (FCWLR model) with symmetrical fuzzy output and crisp input variables for performing fuzzy cluster analysis within a fuzzy linear regression framework is suggested. For measuring the goodness of fit of the suggested FCWLR model with fuzzy output, a fitting index is proposed. In order to illustrate the usefulness of FCWLR model in practice, several applications to artificial and real datasets are shown. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Regularized fuzzy clusterwise ridge regression
Fuzzy clusterwise regression has been a useful method for investigating cluster-level heterogeneity of observations based on linear regression. This method integrates fuzzy clustering and ordinary least-squares regression, thereby enabling to estimate regression coefficients for each cluster and fuzzy cluster memberships of observations simultaneously. In practice, however, fuzzy clusterwise re...
متن کاملA Combinatorial Algorithm for Fuzzy Parameter Estimation with Application to Uncertain Measurements
This paper presents a new method for regression model prediction in an uncertain environment. In practical engineering problems, in order to develop regression or ANN model for making predictions, the average of set of repeated observed values are introduced to the model as an input variable. Therefore, the estimated response of the process is also the average of a set of output values where th...
متن کاملFunctional fuzzy clusterwise regression analysis
We propose a functional extension of fuzzy clusterwise regression, which estimates fuzzy memberships of clusters and regression coefficient functions for each cluster simultaneously. The proposedmethod permits dependent and/or predictor variables to be functional, varying over time, space, and other continua. The fuzzy memberships and clusterwise regression coefficient functions are estimated b...
متن کاملGoodness of fit and variable selection in the fuzzy multiple linear regression
In performing a fuzzy multiple linear regression model, important topics are: to measure the fitting quality of the model and to find the “best” set of input variables that explain the variation in the observed system responses. In this paper, by considering an exploratory approach, to express the quality of fit of a fuzzy linear regression model, a coefficient of multiple determination R2 for ...
متن کاملFuzzy linear regression model with crisp coefficients: A goal programming approach
The fuzzy linear regression model with fuzzy input-output data andcrisp coefficients is studied in this paper. A linear programmingmodel based on goal programming is proposed to calculate theregression coefficients. In contrast with most of the previous works, theproposed model takes into account the centers of fuzzy data as animportant feature as well as their spreads in the procedure ofconstr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 51 شماره
صفحات -
تاریخ انتشار 2006